Sequences of Reflection Functors and the Preprojective Component of a Valued Quiver
نویسنده
چکیده
This paper concerns preprojective representations of a finite connected valued quiver without oriented cycles. For each such representation, an explicit formula in terms of the geometry of the quiver gives a unique, up to a certain equivalence, shortest (+)-admissible sequence such that the corresponding composition of reflection functors annihilates the representation. The set of equivalence classes of the above sequences is a partially ordered set that contains a great deal of information about the preprojective component of the Auslander-Reiten quiver. The results apply to the study of reduced words in the Weyl group associated to an indecomposable symmetrizable generalized Cartan matrix.
منابع مشابه
Reflection Functors and Symplectic Reflection Algebras for Wreath Products
We construct reflection functors on categories of modules over deformed wreath products of the preprojective algebra of a quiver. These functors give equivalences of categories associated to generic parameters which are in the same orbit under the Weyl group action. We give applications to the representation theory of symplectic reflection algebras of wreath product groups.
متن کاملPreprojective Algebras and Mv Polytopes
The purpose of this paper is to apply the theory of MV polytopes to the study of components of Lusztig’s nilpotent varieties. Along the way, we introduce reflection functors for modules over the non-deformed preprojective algebra of a quiver.
متن کاملHarish-Chandra homomorphisms and symplectic reflection algebras for wreath-products
The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflect...
متن کاملPreprojective Representations of Valued Quivers and Reduced Words in the Weyl Group of a Kac-moody Algebra
This paper studies connections between the preprojective representations of a valued quiver, the (+)-admissible sequences of vertices, and the Weyl group by associating to each preprojective representation a canonical (+)-admissible sequence. A (+)-admissible sequence is the canonical sequence of some preprojective representation if and only if the product of simple reflections associated to th...
متن کاملGeneralisations of Preprojective algebras
In this thesis, we investigate two ways of generalising the preprojective algebra. First, we introduce the multiplicative preprojective algebra, Λ(Q), which is a multiplicative analogue of the deformed preprojective algebra, introduced by Crawley-Boevey and Holland. The special case q = 1 is the undeformed multiplicative preprojective algebra, which is an analogue of the ordinary (undeformed) p...
متن کامل